Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions

نویسندگان

  • Lili Xu
  • Stéphane Rondenay
  • Robert D. van der Hilst
چکیده

Southeastern Tibet marks the site of presumed clockwise rotation of the crust due to the India–Eurasian collision and abutment against the stable Sichuan basin and South China block. Knowing the structure of the crust is a key to better understanding of crustal deformation and seismicity in this region. Here, we analyze recordings of teleseismic earthquakes from 25 temporary broadband seismic stations and one permanent station using the receiver function method. We find that the crustal thickness decreases gradually from the Tibetan Plateau proper to the Sichuan basin and Yangtze platform but that significant (intra-)crustal heterogeneity exists on shorter lateral scales (<1000 km). Most receiver functions reveal a time shift of ∼0.2 s in the direct P arrival and negative phases between 0 and 5 s after the first arrival. Inversion of the receiver functions yields S-velocity profiles marked by near-surface and intra-crustal low-velocity zones (IC-LVZs). The shallow low-velocity zones are consistent with the wide distribution of thick surface sedimentary layers. The IC-LVZ varies laterally in depth and strength; it becomes thinner toward the east and southeast and is absent in the Sichuan basin and the southern part of the Yangtze platform. Results from slant-stacking analysis show a concomitant decrease in crust thickness from ∼60 km in the Songpan-Ganze fold system to ∼46 km in the Sichuan basin and ∼40 km in the Yangtze platform. High Poisson’s ratios (>0.30) are detected beneath the southeastern margin of Tibet but in the Sichuan basin and southeastern Yangtze platform the values are close to the global average. Combined with high regional heat flow and independent evidence for mid-crustal layers of high (electric) conductivity, the large intra-crustal S-wave velocity reduction (12–19%) and the intermediate-to-high average crustal Poisson’s ratios are consistent with partial melt in the crust beneath parts of southeastern Tibet. These results could be used in support of deformation models involving intra-crustal flow, with the caveat that significant lateral variation in location and strength of this flow may occur. Published by Elsevier B.V. y; S-wa

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New seismic imaging of some tectonic zones in the Iranian Plateau

The Iranian Plateau is characterized by diverse tectonic domains, including the continental collisions (e.g. the Zagros and Alborz Mountains) and oceanic plate subduction (e.g. Makransubduction zone). To derive a detailed image of the crust–mantle (Moho) and lithosphere–asthenosphere (LAB) boundaries in some tectonically units of the Iranian Plateau, we used a large number of S receiver functio...

متن کامل

Variation of Lithosphere-Asthenosphere boundary beneath Iran by using S Receiver function

The current geological and tectonic setting of Iran is due to the ongoing convergence between the Arabian and Eurasian Plates, which resulted in the formation of the Iranian plateau, mountain building, extensive deformation and seismicity. The Iranian plateau is characterized by various domains including the continental collision and the oceanic plate seduction. Based on S receiver functions ar...

متن کامل

Thickness of Crust in the West of Iran Obtained from Modeling of Ps Converted Waves

Receiver functions are usually used to detect Ps converted waves and are especially useful to picture seismic discontinuities in the crust and upper mantle. In this study, the P receiver function technique beneath the west Iran is used to map out the lateral variation of the Moho boundary. The teleseismic data (Mb ≥5.5, epicentral distance between 30˚-95˚) recorded from 2004 to 2016 at 17 perma...

متن کامل

Is the Asian lithosphere underthrusting beneath northeastern Tibetan Plateau? Insights from seismic receiver functions

a r t i c l e i n f o a b s t r a c t Keywords: lithosphere–asthenosphere boundary Northeastern margin of the Tibetan Plateau Receiver functions Whether or not the Asian lithosphere has underthrusted beneath the Tibetan Plateau is important for understanding the mechanisms of the plateau's growth. Using data from the permanent seismic stations in northeastern Tibetan Plateau, we studied seismic...

متن کامل

Crustal Structure of the Tibetan Plateau and Its Surroundings from Receiver Function Studies

The Tibetan Plateau is the highest and largest plateau in the world, generated by the collision of India and Eurasia. Details of this continent-continent collision and the uplift mechanism of the plateau are still hotly debated. In this study, I collected a large amount of seismic waveform data recorded by more than 300 stations in Tibet and its northern neighbor Tien Shan. I processed the data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007